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1. Introduction ing these surfaces through, for instance, interpolation [1,2], free energy
direct dynamics sampling [3], or modeling of qualitative behaviors [4],
Potential energy surfaces (PES) have proved to be pivotal in en- underlying mechanisms of reactions can be exposed [5]. In particular,

abling a theoretical understanding of chemical dynamics. By construct-
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Caldera type PES are characterized by a central minimum surrounded
by a relatively flat region and four index-1 saddles (two with high val-
ues of energy and two with lower values of energy). The higher energy
saddles control entrance to the Caldera region (and are therefore associ-
ated with reactants in the chemical context) and the lower energy sad-
dles control exit from the Caldera region (associated with products) [4,
6]. Caldera PES have been used to describe many organic chemical re-
actions, such as the vinylcyclopropane-cyclopentene rearrangement [7,
8], the stereomutation of cyclopropane [9], the degenerate rearrange-
ment of bicyclo[3.1.0]hex-2-ene [10,11] or 5-methylenebicyclo[2.1.0]
pentane [12]. In those studies the Caldera PES have been symmetric
with respect to the simultaneous interchange of the higher energy
saddles and the lower energy saddles. These studies have revealed a dy-
namical phenomenon that has come to be realized to be of importance
in organic chemical reactions, and been termed “dynamical matching”
(see [6,13]). This phenomenon is characterized by the feature that all
trajectories that enter the Caldera by crossing the region of the higher
energy saddles evolve straight across the Caldera and exit through the
region of the opposite lower energy saddle. This happens for both of
the higher energy saddles as a result of the symmetry of the PES.
It has been reported that dynamical matching may be broken in a
symmetric Caldera PES in two cases. One is if the PES is symmetrically
stretched in one coordinate direction (see [14-16]) and the other if the
critical points of the PES undergo a pitchfork bifurcation, as described
in [17,18]. This latter work highlights the fact that the original caldera
PES has four index one saddles that control entrance to and exit from
the Caldera region. Certainly more, or fewer, index one saddles is a
possibility in applications. Our approach would provide a guide for
the analysis of such systems, but it Is likely that new phase space
transport mechanisms would be possible. We also remark that we do
not know of a specific molecular reaction that exhibits the type of
dynamical matching that we describe in this paper. Nevertheless, our
results may provide insight into interpreting experimental results in
situations where dynamics resembling dynamical matching occurs, but
the saddle point number and configuration of the PES is different from
the original Caldera PES. In this paper we investigate the phenomenon
of dynamical matching for an asymmetric Caldera PES and show that
fundamentally different dynamical phenomena may occur as a result
of the asymmetry. The paper is organized as follows. In Section 2, we
describe our model, followed by the results (Section 3) and closing with
our conclusions (Section 4).

2. Model

In this section we describe the model under study. The potential
takes the form

Vix,y)= cl(x2 + y2) +cy— c3(x4 + y4 - 6x2y2) +cyx, (@D)]

which is the symmetric Caldera potential [6], with the addition of
the term ¢,x which breaks the horizontal symmetry. Here (x, y) pairs
give the position in Cartesian coordinates. In this paper, we set ¢; =
5,60 = 3,¢3 = —0.3 (as in [13,14]) and ¢, = 2.5. This form of Caldera
(one central minimum with two upper saddles to correspond to high
values of energy and two lower saddles to correspond to lower values
of energy) is maintained for values ¢, € [0,3]. In order to emphasize
the effects of asymmetry, the value ¢, = 2.5 near the extreme end of
this range is chosen.
The addition of a kinetic term yields the Hamiltonian

o
H(X, y’px»py) = E + % + V(x,y), (2)

where p, and p, are the momenta conjugate to x and y respectively,
and we take m = 1. The equations of motion can be directly computed
from the Hamiltonian.

This potential has a similar topography (see Fig. 1) to the symmetric
Caldera potential (see [13,14]) except for the non-existence of sym-
metry with respect to the x = 0 axis. It is characterized by a central
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Fig. 1. The contours of an asymmetric case of the Caldera potential (1) for ¢, =5,¢, =
3,¢; = —=0.3,¢, = 2.5. The equilibria are plotted as blue points (upper saddles), red
points (lower saddles) and a green point (central minimum).

Table 1

Stationary points of the asymmetric Caldera potential for ¢, = 5,¢, = 3,¢; = —0.3 and

¢y =2.5.
Critical point x y E
Central Minimum (CM) -0.256 -0.304 -0.77
Upper Right Saddle (URS) 2.173 2.161 32.41
Upper Left Saddle (ULS) -2.125 1.989 21.67
Lower Right Saddle (LRS) 1.963 -2.101 19.63
Lower Left Saddle (LLS) —-1.880 -1.894 10.01

minimum and four index-1 saddles around it (see for example [6,13—
16]). In Table 1, we give the positions of the equilibrium points of our
system, as shown in Fig. 1.

3. Results

In this section, we will describe a new type of dynamical matching
that we have detected in an asymmetric Caldera PES. The upper saddles
(blue points in Fig. 1) correspond to the reactants and the lower saddles
(red points in Fig. 1) to the formation of products. In the symmetric case
of the Caldera we have dynamical matching for trajectories emanating
from the regions of both upper saddles. In this paper we will analyze
a different type of dynamical matching occurring in the asymmetric
Caldera PES.

In the Caldera PES we use periodic orbit dividing surfaces (PODS) in
order to monitor the entrance in to and exit out from the Caldera. The
dividing surfaces are phase space objects of one dimension less than the
energy surface (see for example [19-22]). These surfaces play an impor-
tant role in transition state theory [23,24] with applications in chemical
reaction dynamics [23,24] and dynamical astronomy [25]. These phase
space objects can be constructed in Hamiltonian systems with two
degrees of freedom (as in our case) using the classical algorithm of [26—
30] described in [19-21]. The generalization of the construction of
these surfaces in Hamiltonian systems with three degrees of freedom
has also been done recently [31-33].

In the symmetric case of the Caldera PES, we have two types of
behavior for trajectories with initial conditions on the PODS associated
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Fig. 2. The evolution of the trajectories (in the configuration space) that are initiated on the periodic orbit dividing surfaces associated with the upper left saddle [that is
represented by a blue color—panel (a)] and the upper right saddle [that is represented by a purple color—panel (b)] for the energy value E = 36.

with the unstable periodic orbits (UPOs) of the upper saddles. The first
type is dynamical matching which was described above. The second
type is the trapping of trajectories in the central area of the Caldera
for a time interval before they exit through any region of a saddle
of the Caldera (see [14-16]). These two behaviors do not coexist in
the symmetric case of the Caldera for a fixed value of energy. The
phase space mechanism responsible for the type of trajectory behavior
is the existence or absence of heteroclinic intersections between the
unstable invariant manifolds of the UPOs of upper saddles and the
stable invariant manifolds of the UPOs of the central area of the Caldera
(see for example [14-16]).

In the asymmetric Caldera PES studied here, we take a uniform sam-
ple of 16,000 initial conditions on the PODS associated with the UPOs
of the upper saddles for the value of energy E = 36 (which is higher
than the energy corresponding to the upper saddles). Then we integrate
these initial conditions in order to investigate the trajectory behavior
associated with this upper saddle. As we can see in Fig. 2, we have
the existence of the two types of trajectory behavior simultaneously for
the same value of energy. The first type corresponds to the trajectories
that are initiated on the dividing surfaces associated with the UPOs
of the upper right saddle (URS). The second type corresponds to the
trajectories that are initiated on the dividing surfaces associated with
the UPOs of the upper left saddle (ULS). This means that we observe
for the first time a new type of dynamical matching, which occurs only
on one side of the Caldera PES and not on the other.

In order to probe the phase space transport mechanism responsible
for this behavior, we used the method of Lagrangian descriptors (LDs)
(see the books [34,35] and references therein) in our Caldera-type
Hamiltonian system (see [15,16] for the computation of LDs in a
Caldera-type system). Using the LDs, we computed the unstable and
stable invariant manifolds in the Poincaré section y = 2 with p, > 0 for
E =36 (see Fig. 3). We choose this section to investigate the behavior
of the invariant manifolds of the UPOs of the upper saddles. We see in
Fig. 3 that the phase space mechanism for this new type of dynamical
matching consists of the coexistence of two phase space mechanisms of
the first and second types of trajectory behavior. This is the origin of
this new type of dynamical matching.

We observe in Fig. 3 that there is a gap between the unstable
invariant manifolds of the UPOs associated with the URS and the
stable invariant manifolds of the central area. The unstable invariant
manifolds guide the trajectories away from the region of the periodic
orbit, but also away from the region of the central area of the Caldera.
This can be confirmed by the fact that a trajectory corresponding to
an initial condition close to the region of the UPO of the URS (like the
green point in Fig. 3) exhibits the first type trajectory behavior [see
Fig. 4(a)] indicating the phenomenon of dynamical matching.

Fig. 3. The invariant manifolds in the 2D slice y = 2 with p, > 0, for value of
energy E = 36. The stable invariant manifolds and the unstable invariant manifolds
are demonstrated by blue and red colors. The invariant manifolds are extracted from
the gradient of the LDs using ¢ = 4 for the integration time. The green and black
points represent two different initial conditions of trajectories. The time evolution of
these trajectories is presented in Fig. 4.

In addition, we see in Fig. 3 that there is an interaction (many
heteroclinic intersections) between the unstable invariant manifolds of
the UPOs associated with the ULS and the stable invariant manifolds of
the central area. This means that many trajectories follow the unstable
invariant manifolds of the UPOs associated with the ULS and they
are trapped inside the lobes between the heteroclinic intersections.
Then they follow the stable invariant manifolds to the central area. An
example of this behavior is the trajectory corresponding to the black
point in Fig. 3. In Fig. 4(b), we see that this trajectory coming from
the region of the ULS is trapped in the central area of the Caldera.
The trajectories, that are trapped in the central area of the Caldera,
are guided away from the center by the unstable invariant manifolds
of the central area, and to the exits from the Caldera (see cases II
and III of [13] or the second part of transport in [36]). This can be
confirmed by the trajectory corresponding to the black point in Fig. 3
[see Fig. 4(b)].

4. Conclusions

We studied the behavior of trajectories that are initiated at the
region of the upper index-1 saddles of an asymmetric Caldera potential
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Fig. 4. (a) The forward (purple color) and backward in time (orange color) evolution in the (x, y) configuration space of the trajectory with initial conditions corresponding to the
green point in Fig. 3. (b) Similar to (a) but for the trajectory with initial conditions corresponding to the black point in Fig. 3. In both panels the periodic orbits corresponding

to each saddle are marked as black lines.

energy surface. We found a new type of dynamical matching, for
which we have the coexistence of dynamical matching and trapping
in the central area of the Caldera potential energy surface for the
trajectories that come from the region of the upper saddles. This is
because of the coexistence of two phase space mechanisms of transport.
These mechanisms are based on the interaction or the gap between the
unstable invariant manifolds of the unstable periodic orbits of the upper

saddles and the stable invariant manifolds of the central area.
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